Genetic and Physiological Analysis of Iron Biofortification in Maize Kernels

نویسندگان

  • Mercy G. Lung'aho
  • Angela M. Mwaniki
  • Stephen J. Szalma
  • Jonathan J. Hart
  • Michael A. Rutzke
  • Leon V. Kochian
  • Raymond P. Glahn
  • Owen A. Hoekenga
چکیده

BACKGROUND Maize is a major cereal crop widely consumed in developing countries, which have a high prevalence of iron (Fe) deficiency anemia. The major cause of Fe deficiency in these countries is inadequate intake of bioavailable Fe, where poverty is a major factor. Therefore, biofortification of maize by increasing Fe concentration and or bioavailability has great potential to alleviate this deficiency. Maize is also a model system for genomic research and thus allows the opportunity for gene discovery. Here we describe an integrated genetic and physiological analysis of Fe nutrition in maize kernels, to identify loci that influence grain Fe concentration and bioavailability. METHODOLOGY Quantitative trait locus (QTL) analysis was used to dissect grain Fe concentration (FeGC) and Fe bioavailability (FeGB) from the Intermated B73 × Mo17 (IBM) recombinant inbred (RI) population. FeGC was determined by ion coupled argon plasma emission spectroscopy (ICP). FeGB was determined by an in vitro digestion/Caco-2 cell line bioassay. CONCLUSIONS Three modest QTL for FeGC were detected, in spite of high heritability. This suggests that FeGC is controlled by many small QTL, which may make it a challenging trait to improve by marker assisted breeding. Ten QTL for FeGB were identified and explained 54% of the variance observed in samples from a single year/location. Three of the largest FeGB QTL were isolated in sister derived lines and their effect was observed in three subsequent seasons in New York. Single season evaluations were also made at six other sites around North America, suggesting the enhancement of FeGB was not specific to our farm site. FeGB was not correlated with FeGC or phytic acid, suggesting that novel regulators of Fe nutrition are responsible for the differences observed. Our results indicate that iron biofortification of maize grain is achievable using specialized phenotyping tools and conventional plant breeding techniques.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The genetic architecture of zinc and iron content in maize grains as revealed by QTL mapping and meta-analysis

Micronutrient malnutrition, especially zinc (Zn) and iron (Fe) deficiency in diets, has aroused worldwide attention. Biofortification of food crops has been considered as a promising approach for alleviating this deficiency. Quantitative trait locus (QTL) analysis was performed to dissect the genetic mechanism of Zn and Fe content in maize grains using a total of 218 F2:3 families derived from ...

متن کامل

Stability Performance of Inductively Coupled Plasma Mass Spectrometry-Phenotyped Kernel Minerals Concentration and Grain Yield in Maize in Different Agro-Climatic Zones

Deficiency of iron and zinc causes micronutrient malnutrition or hidden hunger, which severely affects ~25% of global population. Genetic biofortification of maize has emerged as cost effective and sustainable approach in addressing malnourishment of iron and zinc deficiency. Therefore, understanding the genetic variation and stability of kernel micronutrients and grain yield of the maize inbre...

متن کامل

Rice Enrichment by Genetic Engineering for Combating Iron and Zinc Deficiency

Iron deficiency anemia and zinc deficiency are among the most recognized forms of micronutrient malnutrition and about two billion of people around the world suffer from it.  Monotonous diets based on staple cereals are in fact a poor source of iron and zinc. Rice is a staple food for more than half of the world's population. Various methods have been proposed for food enrichment, but many of t...

متن کامل

Genetic analysis of Biochemical and Physiological Traits using Haymen’s Graphical Approach in Lines and F2 Progenies of Maize (Zea mays L.)

The diallel mating design is an important tool used by plant breeding programs to obtain information on trait inheritance. Knowledge of gene action, heritability and genetic advance from selection is a prerequisite for starting a breeding program for developing varieties of maize. Five maize S7 lines and their F2 progenies were studied in a 5 × 5 half-diallel crossing design to evaluate the gen...

متن کامل

Bioinformatics approach toward identification of candidate genes for zinc and iron transporters in maize

Biofortification of crop plants requires the identification of candidate genes involved in micronutrient accumulation. Scanning of available maize genome sequence resulted in the identification of 33 genes predicted to be involved in iron and zinc transport in maize. Fifteen genes belong to the YS family, 9 to ZIP family, six to Nramp family, two to ferritin family and one to FRO family. Member...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011